skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ma, Yibo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Radiomap characterizes geographical radio spectrum coverage and can facilitate resource allocation and management of wireless networks. One practical radiomap estimation (RME) task is to form a full radiomap from sparse samples collected by sensors or mobile devices. Often, traditional RME approaches focus on statistical data distributions without exploiting the underlying spatial correlations among sparse observations. Utilizing geometric/geographical path correlation, this letter proposes a novel dual-phase RME method based on graph neural networks. In this Dual-phase Graph-based Radiomap Estimation (Dual-GRE) framework, the first phase integrates graph attention (GAT) networks with radio propagation models to construct a coarse-resolution (CR) radiomap to embed the spatial information and physical principles. Phase 2 utilizes a deep convolution neural network that uses the CR radiomap and landscape information to derive fine-resolution radiomaps. Our experimental results demonstrate the power of physics-integrated GAT in capturing the spatial spectrum information, together with the efficiency of the proposed Dual-GRE in radiomap estimation. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  2. Free, publicly-accessible full text available May 1, 2026